Linux培训 达内IT学院
400-996-5531
IT培训
了解达内
联系达内
hadoop访问文件的IO操作都需要通过代码库。因此,在很多情况下,io.file.buffer.size都被用来设置缓存的大小。不论是对硬盘或者是网络操作来讲,较大的缓存都可以提供更高的数据传输
Hadoop元数据合并异常及解决方法
MapReduce和Spark对外提供了上百个配置参数,用户可以为作业定制这些参数以更快,更稳定的运行应用程序。本文梳理了最常用的一些MapReduce和Spark配置参数。
我们在接触Hadoop的时候,第一个列子一般是运行Wordcount程序,在Spark我们可以用Java代码写一个Wordcount程序并部署在Yarn上运行。
Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方。要想理解MapReduce, Shuffle是必须要了解的。我看过很多相关的资料,但每次看完都云里雾里的绕着,
在前篇文章中我介绍了Spark on YARN集群模式(yarn-cluster)作业从提交到运行整个过程的情况(详情见《Spark on YARN集群模式作业运行全过程分析》)
Spark目前被越来越多的企业使用,和Hadoop一样,Spark也是以作业的形式向集群提交任务,那么在内部实现Spark和Hadoop作业模型都一样吗?答案是不对的
Hadoop 2.5.2《Apache Hadoop 2.5.2发布:YARN新增部分功能》才刚刚发布不久,Hadoop 2.6.0就发布了
初学者运行MapReduce作业时,经常会遇到各种错误,由于缺乏经验,往往不知所云,一般直接将终端打印的错误贴到搜索引擎上查找,以借鉴前人的经验。然而,对于hadoop而言,当遇到错误时,第一时间应是查看日志
随着BIG DATA大数据概念逐渐升温,如何搭建一个能够采集海量数据的架构体系摆在大家眼前。如何能够做到所见即所得的无阻拦式采集、如何快速把不规则页面结构化并存储、如何满足越来越多的数据采集还要在有限时间内采集
Copyright © 2023 Tedu.cn All Rights Reserved 京ICP备08000853号-56 京公网安备 11010802029508号 达内时代科技集团有限公司 版权所有