Linux培训
达内IT学院
400-996-5531
Spark的执行
简略描述下Spark的执行。本质上,Spark应用作为独立的进程运行,由驱动程序中的SparkContext协调。这个context将会连接到一些集群管理者(如YARN),这些管理者分配系统资源。集群上的每个worker由执行者(executor)管理,执行者反过来由SparkContext管理。执行者管理计算、存储,还有每台机器上的缓存。
重点要记住的是应用代码由驱动程序发送给执行者,执行者指定context和要运行的任务。执行者与驱动程序通信进行数据分享或者交互。驱动程序是Spark作业的主要参与者,因此需要与集群处于相同的网络。这与Hadoop代码不同,Hadoop中你可以在任意位置提交作业给JobTracker,JobTracker处理集群上的执行。
与Spark交互
使用Spark最简单的方式就是使用交互式命令行提示符。打开PySpark终端,在命令行中打出pyspark。
~$ pyspark [… snip …] >>>
PySpark将会自动使用本地Spark配置创建一个SparkContext。你可以通过sc变量来访问它。我们来创建第一个RDD。
>>> text = sc.textFile("shakespeare.txt") >>> print text shakespeare.txt MappedRDD[1] at textFile at NativeMethodAccessorImpl.java:-2
textFile方法将莎士比亚全部作品加载到一个RDD命名文本。如果查看了RDD,你就可以看出它是个MappedRDD,文件路径是相对于当前工作目录的一个相对路径(记得传递磁盘上正确的shakespear.txt文件路径)。我们转换下这个RDD,来进行分布式计算的“hello world”:“字数统计”。
>>> from operator import add >>> def tokenize(text): ... return text.split() ... >>> words = text.flatMap(tokenize) >>> print words PythonRDD[2] at RDD at PythonRDD.scala:43
我们首先导入了add操作符,它是个命名函数,可以作为加法的闭包来使用。我们稍后再使用这个函数。首先我们要做的是把文本拆分为单词。我们创建了一个tokenize函数,参数是文本片段,返回根据空格拆分的单词列表。然后我们通过给flatMap操作符传递tokenize闭包对textRDD进行变换创建了一个wordsRDD。你会发现,words是个PythonRDD,但是执行本应该立即进行。显然,我们还没有把整个莎士比亚数据集拆分为单词列表。
如果你曾使用MapReduce做过Hadoop版的“字数统计”,你应该知道下一步是将每个单词映射到一个键值对,其中键是单词,值是1,然后使用reducer计算每个键的1总数。
首先,我们map一下。
>>> wc = words.map(lambda x: (x,1)) >>> print wc.toDebugString() (2) PythonRDD[3] at RDD at PythonRDD.scala:43 | shakespeare.txt MappedRDD[1] at textFile at NativeMethodAccessorImpl.java:-2 | shakespeare.txt HadoopRDD[0] at textFile at NativeMethodAccessorImpl.java:-2
我使用了一个匿名函数(用了Python中的lambda关键字)而不是命名函数。这行代码将会把lambda映射到每个单词。因此,每个x都是一个单词,每个单词都会被匿名闭包转换为元组(word, 1)。为了查看转换关系,我们使用toDebugString方法来查看PipelinedRDD是怎么被转换的。可以使用reduceByKey动作进行字数统计,然后把统计结果写到磁盘。
>>> counts = wc.reduceByKey(add) >>> counts.saveAsTextFile("wc")
一旦我们最终调用了saveAsTextFile动作,这个分布式作业就开始执行了,在作业“跨集群地”(或者你本机的很多进程)运行时,你应该可以看到很多INFO语句。如果退出解释器,你可以看到当前工作目录下有个“wc”目录。
$ ls wc/ _SUCCESS part-00000 part-00001
每个part文件都代表你本机上的进程计算得到的被保持到磁盘上的最终RDD。如果对一个part文件进行head命令,你应该能看到字数统计元组。
$ head wc/part-00000 (u'fawn', 14) (u'Fame.', 1) (u'Fame,', 2) (u'kinghenryviii@7731', 1) (u'othello@36737', 1) (u'loveslabourslost@51678', 1) (u'1kinghenryiv@54228', 1) (u'troilusandcressida@83747', 1) (u'fleeces', 1) (u'midsummersnightsdream@71681', 1)
注意这些键没有像Hadoop一样被排序(因为Hadoop中Map和Reduce任务中有个必要的打乱和排序阶段)。但是,能保证每个单词在所有文件中只出现一次,因为你使用了reduceByKey操作符。你还可以使用sort操作符确保在写入到磁盘之前所有的键都被排过序。
填写下面表单即可预约申请免费试听! 怕学不会?助教全程陪读,随时解惑!担心就业?一地学习,可全国推荐就业!
Copyright © 京ICP备08000853号-56 京公网安备 11010802029508号 达内时代科技集团有限公司 版权所有
Tedu.cn All Rights Reserved